
Soot - a Java Bytecode Optimization Framework

Raja Vallée-Rai Phong Co Etienne Gagnon
Laurie Hendren Patrick Lam Vijay Sundaresan

Sable Research Group
School of Computer Science

McGill University

Abstract

This paper presents Soot, a framework for opti-
mizing Java bytecode. The framework is imple-
mented in Java and supports three intermediate rep-
resentations for representing Java bytecode: Baf,
a streamlined representation of bytecode which is
simple to manipulate; Jimple, a typed 3-address in-
termediate representation suitable for optimization;
and Grimp, an aggregated version of Jimple suit-
able for decompilation. We describe the motiva-
tion for each representation, and the salient points
in translating from one representation to another.
In order to demonstrate the usefulness of the

framework, we have implemented intraprocedural
and whole program optimizations. To show that
whole program bytecode optimization can give per-
formance improvements, we provide experimen-
tal results for 12 large benchmarks, including 8
SPECjvm98 benchmarks running on JDK 1.2 for
GNU/Linux . These results show up to 8% im-
provement when the optimized bytecode is run us-
ing the interpreter and up to 21% when run using
the JIT compiler.

1 Introduction

Java provides many attractive features such as plat-
form independence, execution safety, garbage col-
lection and object orientation. These features facil-
itate application development but are expensive to

The authors’ e-mail addresses are: rvalleerai, pco, gagnon,
hendren, plam, vijay @sable.mcgill.ca, respectively. This re-
search was supported by IBM’s Centre for Advanced Studies
(CAS), NSERC and FCAR. Java is a trademark of Sun Mi-
crosystems Inc.

support; applicationswritten in Java are oftenmuch
slower than their counterparts written in C or C++.
To use these features without having to pay a great
performance penalty, sophisticated optimizations
and runtime systems are required. Using a Just-In-
Time compiler[1], or a Way-Ahead-Of-Time Java
compiler[21] [20], to convert the bytecodes to na-
tive instructions is the most often used method for
improving performance. There are other types of
optimizations, however, which can have a substan-
tial impact on performance:

Optimizing the bytecode directly: Some byte-
code instructions are much more expensive
than others. For example, loading a local vari-
able onto the stack is inexpensive; but virtual
methods calls, interface calls, object alloca-
tions, and catching exceptions are all expen-
sive. Traditional C-like optimizations, such
as copy propagation, have little effect because
they do not target the expensive bytecodes. To
perform effective optimizations at this level,
one must consider more advanced optimiza-
tions such as method inlining, and static vir-
tual method call resolution, which directly re-
duce the use of these expensive bytecodes.

Annotating the bytecode: Java’s execution
safety feature guarantees that all potentially il-
legal memory accesses are checked for safety
before execution. In some situations it can
be determined at compile-time that particular
checks are unnecessary. For example, many
array bound checks can be determined to be
completely unnecessary[14]. Unfortunately,
after having determined the safety of some ar-

ray accesses, we can not eliminate the bounds
checks directly from the bytecode, because
they are implicit in the array access bytecodes
and can not be separated out. But if we can
communicate the safety of these instructions
to the Java Virtual Machine by some anno-
tation mechansim, then the Java Virtual Ma-
chine could speed up the execution by not per-
forming these redundant checks.

The goal of our work is to develop tools that
simplify the task of optimizing Java bytecode, and
to demonstrate that significant optimization can be
achieved using these tools. Thus, we have devel-
oped the Soot[24] framework which provides a set
of intermediate representations and a set of Java
APIs for optimizing Java bytecode directly. The
optimized bytecode can be executed using any stan-
dard Java Virtual Machine (JVM) implementation,
or it could be used as the input to a bytecode C or
bytecode native-code compiler.

Based on the Soot framework we have im-
plemented both intraprocedural optimizations and
whole program optimizations. The framework has
also been designed so that we will be able to add
support for the annotation of Java bytecode. We
have applied our tool to a substantial number of
large benchmarks, and the best combination of op-
timizations implemented so far can yield a speed
up reaching 21%.

In summary, our contributions in this paper are:
(1) three intermediate representations which pro-
vide a general-purpose framework for bytecode op-
timizations, and (2) a comprehensive set of results
obtained by applying intraprocedural and whole
program optimizations to a set of real Java appli-
cations.

The rest of the paper is organized as follows.
Section 2 gives an overview of the framework. Sec-
tion 3 describes the three intermediate representa-
tions used, in detail. Section 4 describes the steps
required to transform bytecode from one interme-
diate representation to another. Section 5 describes
the current optimizations present in the Soot frame-
work. Section 6 presents and discusses our exper-
imental results. Section 7 covers the conclusions
and related work.

.class

Jimple

Baf

.java

Grimp

optimizations

javac

optimizations

optimizations

Figure 1: The Soot Optimization Framework con-
sists of three intermediate representations: Baf,
Jimple and Grimp.

2 Framework Overview

The Soot framework has been designed to sim-
plify the process of developing new optimizations
for Java bytecode. To do this we have developed
three intermediate representations: Baf, a stream-
lined representation of bytecode which is simple
to manipulate; Jimple, a typed 3-address interme-
diate representation suitable for optimization; and
Grimp, an aggregated version of Jimple suitable for
decompilation. Section 3 gives more detailed de-
scriptions of each intermediate representation.
Optimizing Java bytecode in Soot consists of

transforming Java bytecode subsequently to Baf,
Jimple, Grimp, back to Baf, and then to bytecode,
and while in each representation, performing some
appropriate optimization (see figure 1.)

3 Intermediate Representations

Baf, Jimple, and Grimp are three unstructured rep-
resentations for Java bytecode. They were devel-
oped to allow optimizations and analyses to be per-
formed on Java bytecode at the most appropriate
level. Each representation is discussed in more de-

tail below, and figures 2, 3, 4 and 5 provide an ex-
ample program in each form.

3.1 Baf

Motivation

Although the primary goal of the Soot framework
is to avoid having to deal with bytecode as stack
code, it is still sometimes necessary to analyze or
optimize bytecode in this form. We use it in two
ways. First, in order to produce Jimple code, it is
necessary to perform abstract interpretation on the
stack. Second, before producing new bytecode, it
is convenient to perform some peephole optimiza-
tions and stack manipulations to eliminate redun-
dant load/stores. These analyses and transforma-
tions could be performed on Java bytecode directly,
but this is tedious for two reasons: encoding issues,
and untyped bytecodes.
One of the many encoding issues to deal with is

the constant pool. Bytecode instructions must re-
fer to indices in this pool in order to access fields,
methods, classes, and constants, and this constant
pool must be tediously maintained. Baf abstracts
away the constant pool, and thus it is easier to ma-
nipulate Baf code.
Another problem with Java bytecode is the pres-

ence of untyped bytecodes. A large proportion of
the bytecodes are fully typed, in the sense that their
effect on the stack is made explicit by the opcode.
For example, the iload instruction indicates that
an integer is loaded on to the stack. A few instruc-
tions, however, have been left untyped. Two ex-
amples are dup and swap. In order to determine
their exact effect one must already knowwhat types
are on the stack, and thus typed stack interpretation
must be performed. This step can be avoided by us-
ing Baf because each Baf instruction has an explicit
type.

Description

Baf is a bytecode representation which is stack
based, but without the complications that are
present in Java bytecode. Baf consists of a set of or-
thogonal instructions which are fully typed to sim-
plify analyses and transformations. We have also
developed an assembler format for Baf to allow
easy modifications to class files in this form. An
example of a Baf program is given in figure 3. Note

that the local variables are given explicit names,
and that there are some identity instructions at the
beginning of the method to mark the local variables
with pre-defined meanings, such as this.

3.2 Jimple

Motivation

Optimizing stack code directly is awkward for mul-
tiple reasons, even if the code is in a streamlined
form such as Baf. First, the stack implicitly par-
ticipates in every computation; there are effectively
two types of variables, the implicit stack variables
and explicit local variables. Second, the expres-
sions are not explicit, and must be located on the
stack[30]. For example, a simple instruction such
as and can have its operands separated by an ar-
bitrary number of stack instructions, and even by
basic block boundaries. Another difficulty is the
untyped nature of the stack and of the local vari-
ables in the bytecode, as this confuses some anal-
yses which expect explicitly typed variables. A
fourth problem is the jsr contained in the byte-
code instruction set. The jsr bytecode is difficult
to handle because it is essentially a interprocedu-
ral feature which is inserted into a traditionally in-
traprocedural context.

Description

Jimple is a 3-address code representation of byte-
code, which is typed and does not include the 3-
address code equivalent of a jsr (jsr instructions
are allowed in the input bytecode, and are elimi-
nated in the generated Jimple code). It is an ideal
form for performing optimizations and analyses,
both traditional optimizations such as copy prop-
agation and more advanced optimizations such as
virtual method resolution that object-oriented lan-
guages such as Java require. Essentially, the stack
has been eliminated and replaced by additional lo-
cal variables. Additionally, the typed nature of the
bytecode and the untyped nature of the local and
stack area variables have been reversed; the op-
erators in Jimple are untyped, but the local vari-
ables are given explicit primitive, class, or inter-
face types. And finally the jsr bytecode has been
eliminated by subroutine replication, a technique
which causes in practice very little code growth,
but greatly simplifies analyses and transformations.

public int stepPoly(int x)
{

if(x < 0)
{

System.out.println("foo");
return -1;

}
else if(x <= 5)

return x * x;
else

return x * 5 + 16;
}

Figure 2: stepPoly in its original Java form.

public int ’stepPoly’(int)
{

word r0, i0

r0 := @this
i0 := @parameter0
load.i i0
ifge label0
staticget java.lang.System.out
push "foo"
virtualinvoke println
push -1
return.i

label0:
load.i i0
push 5
ifcmpgt.i label1
load.i i0
load.i i0
mul.i
return.i

label1:
load.i i0
push 5
mul.i
push 16
add.i
return.i

}

Figure 3: stepPoly in Baf form.

public int ’stepPoly’(int)
{

Test r0;
int i0, $i1, $i2, $i3;
java.io.PrintStream $r1;

r0 := @this;
i0 := @parameter0;
if i0 >= 0 goto label0;

$r1 = java.lang.System.out;
$r1.println("foo");
return -1;

label0:
if i0 > 5 goto label1;

$i1 = i0 * i0;
return $i1;

label1:
$i2 = i0 * 5;
$i3 = $i2 + 16;
return $i3;

}

Figure 4: stepPoly in Jimple form. Dollar
signs indicate local variables representing stack po-
sitions.

public int stepPoly(int)
{

Test r0;
int i0;

r0 := @this;
i0 := @parameter0;
if i0 >= 0 goto label0;

java.lang.System.out.println("foo");
return -1;

label0:
if i0 > 5 goto label1;

return i0 * i0;

label1:
return i0 * 5 + 16;

}

Figure 5: stepPoly in Grimp form.

Figure 4 shows the Jimple code generated for the
example program. Note that all local variables are
given explicit types, and that variables representing
stack positions are prefixed with $.

3.3 Grimp

Motivation

One of the common problems in dealing with in-
termediate representations is that they are difficult
to read because they do not resemble structured
languages. In general, they contain many goto’s
and expressions are extremely fragmented. An-
other problem is that despite its simple form, for
some analyses, 3-address code is sometimes harder
to deal with than complex structures. For example,
we found that generating good stack code was sim-
pler when large expressions were available.

Description

Grimp is an unstructured representation of Java
bytecode which allows trees to be constructed
for expressions as opposed to the flat expressions
present in Jimple. In general, it is much easier to
read than Baf or Jimple, and for code generation,
especially when the target is stack code, it is a
much better source representation. It also has
a representation for the new operator in Java
which combines the new bytecode instruction
with the invokespecial bytecode instruc-
tion. Essentially, Grimp looks like a partially
decompiled Java code and we are also using
Grimp as the foundation for a decompiler. Figure
5 gives the example program in Grimp format.
Note that the Grimp code is extremely similar to
the original Java code, and that the statements
$i2 = i0 * 5; $i3 = $i2 + 16; re-
turn $i3; have been collapsed down to
return i0 * 5 + 16.

4 Transformations

This section describes the steps necessary to trans-
form Java bytecode from one intermediate repre-
sentation to another (including to and from the na-
tive Java bytecode representation.)

4.1 bytecode Baf

Most of the bytecodes correspond directly to equiv-
alent Baf instructions. The only difficulty lies
in giving types to the dup and swap instruc-
tions, which is required because Baf is fully typed.
This can always be performed because the Java
Virtual Machine guarantees that the types on the
stack at every program point can be determined
statically[18]. This is done by performing a sim-
ple stack simulation.

4.2 Baf Jimple

Producing Jimple code from Baf is a multistep op-
eration:

1. Produce naive 3-address code: Map every
stack variable to a local variable, by determin-
ing the stack height at every instruction. Then
map each instruction which acts implicitly on
the stack variables to a 3-address code state-
ment which refers to the local variables ex-
plicitly. This is a standard technique and is
covered in detail in [21] and [20].

2. Type the local variables: The resulting Jim-
ple code may be untypable because a local
variable may be used with two different types
in different contexts. So the next step is to
split the uses and definitions of local variables
according to webs[19]. This produces, in al-
most all cases, Jimple code whose local vari-
ables can be given a primitive, class, or in-
terface type. To do this, we invoke an algo-
rithm described in [12]. The complete solu-
tion to this typing problem is non-trivial as it
is NP-complete, but in practice heuristics suf-
fice. Although splitting the local variables in
this step producesmany local variables, the re-
sulting Jimple code tends to be easier to an-
alyze because it inherits some of the disam-
biguation benefits of SSA[8].

3. Clean up the code: Now that the Jimple
code is typed, it remains to be compacted
because step 1 produces extremely verbose
code[21] [20]. Although constant propaga-
tion, copy propagation, and even back copy
propagation[23] are suggested techniques to
be used at this point, we have found that
simple aggregation (collapsing single def/use

pairs) to be sufficient to eliminate almost all
redundant stack variables.

4.3 Jimple Grimp

Producing Grimp code from Jimple is straightfor-
ward given that Grimp is essentially Jimple with
arbitrarily nested expressions instead of references
to locals.

1. Aggregate expressions: for every single
def/use pair, attempt to move the right hand
side of the definition into the use. Currently
we only consider def-use pairs which reside
in the same extended basic block, but our re-
sults indicate that almost all pairs are caught.
Some care must be taken to guard against vio-
lating data dependencies or producing side ef-
fects when moving the right hand side of the
definition.

2. Fold constructors: pairs consisting of new
and specialinvoke are collapsed into one
Grimp expression called newinvoke.

3. Aggregate expressions: folding the construc-
tors usually exposes additional aggregation
opportunities. These are taken advantage of
in this second aggregation step.

The Grimp code generated by these three steps
is extremely similar to the original Java source
code; almost all introduced stack variables have
been eliminated. Statements from Java which have
multiple local variable definitions, however, cannot
be represented as compactly, and this complicates
Baf code generation. An example is given below.

$stack = j;
a[j++] = j j = j + 1;

r1[$stack] = j;

Java code Grimp code

4.4 Grimp Baf

Generating Baf code from Grimp is straightfor-
ward because Grimp consists of tree statements and
Baf is a stack-based representation. Standard code
generation techniques for stack machines are used
here[2].
The code generated in some cases by this tree

traversal is inefficient compared to the original Java
bytecode. This usually occurs when the original

Java source contained compact C-like constructs
such as in the example above. This inefficiency
may have a significant impact on the program ex-
ecution time if it occurs in loops. We delegate the
optimization of these cases to the next transforma-
tion.

4.5 Baf bytecode

Producing bytecode from Baf requires 4 steps:

1. Pack local variables: the local variables pro-
duced fromGrimp assumed that they had to be
typed as in Jimple. Baf has however only two
types (word, dword) and so many less vari-
ables can actually be used by making some
variables with different types share the same
name. To rename these local variables, we use
a simple register allocation scheme based on
interference graphs[19].

2. Optimize load/stores: the Baf code produced
from Grimp may have some redundant load
and stores. These come from bytecode which
originate from Java statements which have
multiple local variable definitions, as in the
previous example.

3. Compute maximum stack height: the Java Vir-
tual Machine requires that the maximum stack
height for each method be given. This can be
computed by performing a simple depth first
traversal of the Baf code.

4. Produce the bytecode: every Baf instruction is
then converted to the corresponding bytecode
instruction.

5 Optimizations

We have implemented a set of traditional scalar op-
timizations. They are described in [2], [19], and
[3], and consist of:

constant propagation and folding;

conditional and unconditional branch elimina-
tion;

copy propagation;

dead assignment and unreachable code elimi-
nation;

expression aggregation.

Based on our framework we plan to add fur-
ther optimizations such as common sub-expression
elimination and loop invariant removal. For best
effect these optimizations need side-effect analy-
sis, and two varieties of side-effect analysis are cur-
rently being developed.
At the heart of whole program optimization for

object oriented languages is the call graph. The call
graph contains information about the possible tar-
gets of virtual method calls. In general, a call graph
with more precision enables more effective whole
program optimization of an application. We have 3
methods for constructing the call graph which in-
volve different time/space trade-offs:

class hierarchy analysis[11];

rapid type analysis[5];

variable type analysis[26].

After building the call graph, we currently per-
form only one optimization: method inlining. We
have also experimentedwith static method binding,
where virtual dispatches are replaced with static
dispatches, whenever possible. Unfortunately, pre-
liminary results produced slowdowns and are un-
dergoing investigation.

6 Experimental Results

Methodology

In order to demonstrate the usefulness of our
framework, we have optimized a collection of large
Java applications. The experimental results that we
present in this paper are speed ups: the ratio of
original execution time to the execution time af-
ter an application has been processed with Soot.
All experiments were performed on dual 400Mhz
Pentium II machines running GNU/Linux, with
the blackdown release of Linux JDK1.2 pre-release
version 11. Execution times were measured by tak-
ing the best of five runs on an unloaded machine,
and we report results for both the interpreter and the
JIT compiler. All executions were verified for cor-
rectness by comparing the output of the modified
program to the output of the original application.
Although not built for speed, Soot is very usable;
optimizing class files averages about 2.5 times the
execution time of javac to compile them.

1http://www.blackdown.org

The benchmarks used consist of the
SPECjvm982 suite, plus two additional appli-
cations, each performing two different runs. The
benchmarks sablecc-j and sablecc-w are runs of
the SableCC[22] compiler compiler, and soot-c
and soot-j are benchmarks based on an older
version of Soot. Figure 6 consists of benchmark
characteristics and speed-up results. As indicated
by the figure, all of the benchmarks have non-
trivial execution times, and are reasonably sized
applications, represented by thousands of Jimple
statements. We also include, as a benchmark
characteristic, the speed-up obtained by using
the JIT over the interpreter. Note that the four
benchmarks that we have added to the JVM98
Suite are not sped up by the JIT nearly as much as
the others, and clearly have different performance
bottlenecks.
We present three columns of speed up results,

which result from processing the application class-
files in different ways:

: Processes the files through Soot without at-
tempting to optimize them. The ideal result is 1.00.
-O: Performs our set of intraprocedural opti-

mizations on each method in isolation.
-W: Transforms all the application class files

and performs whole program optimizations. Es-
sentially, class hierarchy analysis is used to build
the call graph, and then ilining is performed. Then
-O is performed on each method, exploiting the op-
timization opportunities that inlining may have ex-
posed.

Observations

: Currently, processing class files with Soot,
without performing any optimizations does not
produce bytecode of the same caliber as the origi-
nal bytecode. As mentioned in section 4.3, the cur-
rent technique used to generate code from Grimp
may introduce redundant loads and stores. This is
particularly problematic with 201 compress, be-
cause redundant loads and stores are introduced
into a critical loop. Interestingly, the JIT is un-
affected by the verbose code; this suggests that it
performs some form of copy propagation after it
has converted the bytecode to register code.
-O: Turning on intraprocedural optimizations

manages to produce files which have nearly iden-
tical execution time as the originals. Since these
are scalar optimizations that are orthogonal to the

2http://www.spec.org/

Jimple Base Execution Speed up: Speed up: -O Speed up: -W
Stmts Int. JIT Int./JIT Int. JIT Int. JIT Int. JIT

201 compress 3562 441s 67s 6.6 0.86 0.97 1.00 1.00 0.98 1.21
202 jess 13697 109s 48s 2.3 0.97 0.99 0.99 0.98 1.03 1.03
205 raytrace 6302 125s 54s 2.3 0.99 0.99 1.00 0.97 1.08 1.10
209 db 3639 229s 130s 1.8 0.98 1.03 1.01 1.02 1.00 1.03
213 javac 26656 135s 68s 2.0 0.99 1.01 1.00 1.00 1.01 1.00
222 mpegaudio 15244 374s 54s 6.9 0.94 0.97 0.99 1.00 0.96 1.05
227 mtrt 6307 129s 57s 2.3 0.99 1.01 1.00 0.99 1.07 1.10
228 jack 13234 144s 61s 2.4 0.99 0.97 0.99 0.99 1.00 0.98
sablecc-j 25344 45s 30s 1.5 0.98 1.01 0.99 0.99 1.00 1.04
sablecc-w 25344 70s 38s 1.8 1.00 1.00 1.00 1.01 0.98 1.04
soot-c 39938 85s 49s 1.7 0.98 0.99 0.98 1.00 1.03 0.96
soot-j 39938 184s 126s 1.5 0.98 0.99 0.99 0.99 1.02 1.01

Figure 6: Benchmark characteristics and speed-up results. , -O and -W represent no optimizations,
intraprocedural optimizations, and whole program optimizations, respectively. The programs were executed
on a 400Mhz dual Pentium II machine running GNU/Linux with Linux JDK1.2, pre-release version 1.

elimination of the redundant loads and stores, we
expect that -O will produce a net speed up of 2-
3% when our Baf optimizations are ready. Perhaps
the effect will be greater for 201 compress, since
the scalar optimizations seem to compensate for a
slowdown of .14 due to redundant loads and stores.
On 201 compress the optimizations have practi-
cally no effect on the JIT, suggesting that the JIT is
already performing these optimizations. In general,
intraprocedural optimizations have very little effect
on Java bytecode, which is what we expect, given
that our current intraprocedural optimizations can
only work on scalar operations which are relatively
inexpensive.
-W: Performing whole program optimizations

does produce significant speed ups. In general, the
effect of devirtualization and of inlining is more
pronounced under the JIT than the interpreter, due
to the increased relative cost of virtual dispatches,
and the fact that larger method bodies are available
to the JIT optimizer. This is particularly notice-
able for 201 compress for which inlining yields no
speed up under the interpreter, but exhibits a 21%
speed up under the JIT. soot-j illustrates the danger
of code expansion with JIT compilers, as inlining
produces more code which must be translated by
the JIT without incurring any speed benefits.

7 Related Work

Related work falls into five different categories:

Bytecode optimizers: There are only 2 Java tools
that we are aware of which perform signifi-
cant optimizations on bytecode and produce
new class files: Cream[6] and Jax[28]. Cream
performs optimizations such as loop invariant
removal and common sub-expression elimina-
tion using a simple side effect analysis. Only
extremely small speed-ups (1% to 3%) are re-
ported, however. The main goal of Jax is ap-
plication compressionwhere, for example, un-
used methods and fields are removed, and the
class hierarchy is compressed. They also are
interested in speed optimizations, but at this
time their current published speed up results
are more limited than those presented in this
paper. It would be interesting, in the future,
to compare the results of the three systems on
the same set of benchmarks.

Bytecode annotators: Tools of this category an-
alyze bytecode and produce new class files
with annotations which convey information to
the virtual machine on how to execute the
bytecode faster. We are aware of one such
system[4] which passes register allocation in-
formation to a JIT compiler in this manner.
They obtain speed-ups between 17% to 41%
on a set of four scientific benchmarks.

Bytecode manipulation tools: There are a number
of Java tools which provide frameworks for
manipulating bytecode: JTrek[16], Joie[7],

Bit[17] and JavaClass[15]. These tools are
constrained to manipulating Java bytecode in
their original form, however. They do not pro-
vide convenient intermediate representations
such as Baf, Jimple or Grimp for performing
analyses or transformations.

Java application packagers: There are a number
of tools to package Java applications, such as
Jax[28], DashO-Pro[9] and SourceGuard[25].
Application packaging consists of code com-
pression and/or code obfuscation. Although
we have not yet applied Soot to this appli-
cation area, we have plans to implement this
functionality as well.

Java native compilers: The tools in this cate-
gory take Java applications and compile them
to native executables. These are related be-
cause they all are forced to build 3-address
code intermediate representations, and some
perform significant optimizations. The sim-
plest of these is Toba[21] which produces un-
optimized C code and relies on GCC to pro-
duce the native code. Slightly more sophisti-
cated, Harissa[20] also produces C code but
performs some method devirtualization and
inlining first. The most sophisticated sys-
tems are Vortex[10] and Marmot[13]. Vor-
tex is a native compiler for Cecil, C++ and
Java, and contains a complete set of optimiza-
tions. Marmot is also a complete Java opti-
mization compiler and is SSA based. Each of
these systems include their customized inter-
mediate representations for dealing with Java
bytecode, and produce native code directly.
There are also numerous commercial Java na-
tive compilers, such as the IBM (R) High
Performance Compiler for Java, Tower Tech-
nology’s TowerJ[29], and SuperCede[27], but
they have very little published information.
The intention of our work is to provide a pub-
lically available infrastructure for bytecode
optimization. The optimized bytecode could
be used as input to any of these other tools.

8 Conclusions and Future Work

We have presented Soot, a framework for optimiz-
ing Java bytecode. Soot consists of three interme-
diate representations (Baf, Jimple & Grimp), trans-
formations between these IRs, and a set of opti-
mizations on these intermediate representations.

Our contributions in this paper are the interme-
diate representations, the transformations between
the intermediate representations, and a comprehen-
sive set of speed up results of processing class files
through Soot with an increasing level of optimiza-
tion.
We are encouraged by our results so far, and we

have found that the Soot APIs have been effective
for a variety of tasks including the optimizations
presented in this paper.
We are actively engaged in further work on Soot

on many fronts. Baf-level optimizations are be-
ing pursued for eliminating the redundant loads
and stores. We are also completing the set of ba-
sic traditional optimizations by adding side-effect
analyses and optimizations such as loop invariant
removal and common sub expression elimination.
We have also begun the design of an annotation
mechanism.

References

[1] Ali-Reza Adl-Tabatabai, Michal Cierniak,
Guei-Yuan Lueh, Vishesh M. Parikh, and
James M. Stichnoth. Fast and effective code
generation in a just-in-time Java compiler.
ACM SIGPLANNotices, 33(5):280–290,May
1998.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers Principles, Techniques and
Tools. Addison-Wesley, 1986.

[3] Andrew W. Appel. Modern Compiler Im-
plementation in Java. Cambridge University
Press, Cambridge, UK, 1998.

[4] Ana Azevedo, Alex Nicolau, and Joseph
Hummel. Java Annotation-Aware Just-In-
Time (AJIT) Compilation System. Proc. of
the ACM 1999 Java Grande Conference, San
Francisco., June 1999.

[5] David F. Bacon and Peter F. Sweeney. Fast
static analysis of C++ virtual function calls.
In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages,
and Applications, volume 31, 10 of ACM
SIGPLAN Notices, pages 324–341, New
York, October 6–10 1996. ACM Press.

[6] Lars R. Clausen. A Java bytecode opti-
mizer using side-effect analysis. Concur-
rency: Practice & Experience, 9(11):1031–
1045, November 1997.

[7] Geoff A. Cohen, Jeffrey S. Chase, and
David L. Kaminsky. Automatic program
transformation with JOIE. In Proceedings
of the USENIX 1998 Annual Technical Con-
ference, pages 167–178, Berkeley, USA,
June 15–19 1998. USENIX Association.

[8] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark K. Wegman, and F. Kenneth Zadeck.
An efficient method of computing static sin-
gle assignment form. In 16th Annual ACM
Symposium on Principles of Programming
Languages, pages 25–35, 1989.

[9] DashOPro.
. http://www.preemptive.com/products.html.

[10] Jeffrey Dean, Greg DeFouw, David Grove,
Vassily Litvinov, and Craig Chambers. VOR-
TEX: An optimizing compiler for object-
oriented languages. In Proceedings OOPSLA
’96 Conference on Object-Oriented Program-
ming Systems, Languages, and Applications,
volume 31 of ACM SIGPLAN Notices, pages
83–100. ACM, October 1996.

[11] Jeffrey Dean, David Grove, and Craig Cham-
bers. Optimization of object-oriented pro-
grams using static class hierarchy analysis.
In Walter G. Olthoff, editor, ECOOP’95—
Object-Oriented Programming, 9th European
Conference, volume 952 of Lecture Notes in
Computer Science, pages 77–101, Åarhus,
Denmark, 7–11 August 1995. Springer.

[12] Étienne Gagnon and Laurie Hendren. Intra-
procedural Inference of Static Types for Java
Bytecode. Sable Technical Report 1999-1,
Sable Research Group, McGill University,
March 1999.

[13] Robert Fitzgerald, Todd B. Knoblock, Erik
Ruf, Bjarne Steensgaard, and David Tarditi.
Marmot: an Optimizing Compiler for Java.
Microsoft technical report, Microsoft Re-
search, October 1998.

[14] Rajiv Gupta. Optimizing array bound checks
using flow analysis. ACM Letters on Pro-
gramming Languages and Systems, 2(4):135–
150, March 1993.

[15] JavaClass.
. http://www.inf.fu-berlin.de/ dahm/JavaClass/ .

[16] Compaq JTrek.
. http://www.digital.com/java/download/jtrek .

[17] Han Bok Lee and Benjamin G. Zorn. A Tool
for Instrumenting Java Bytecodes. In The
USENIX Symposium on Internet Technologies
and Systems, pages 73–82, 1997.

[18] Tim Lindholm and Frank Yellin. The Java
Virtual Machine Specification. Addison-Wes-
ley, Reading, MA, USA, second edition,
1999.

[19] Steven S. Muchnick. Advanced Compiler De-
sign and Implementation. MorganKaufmann,
1997.

[20] Gilles Muller, Bárbara Moura, Fabrice Bel-
lard, and Charles Consel. Harissa: A flexible
and efficient Java environment mixing byte-
code and compiled code. In Proceedings of
the 3rd Conference on Object-Oriented Tech-
nologies and Systems, pages 1–20, Berkeley,
June 16–20 1997. Usenix Association.

[21] ToddA. Proebsting, Gregg Townsend, Patrick
Bridges, John H. Hartman, Tim Newsham,
and Scott A. Watterson. Toba: Java for
applications: A way ahead of time (WAT)
compiler. In Proceedings of the 3rd Con-
ference on Object-Oriented Technologies and
Systems, pages 41–54, Berkeley, June 16–20
1997. Usenix Association.

[22] SableCC.
. http://www.sable.mcgill.ca/sablecc/.

[23] Tatiana Shpeisman and Mustafa Tikir. Gener-
ating Efficient Stack Code for Java. Technical
report, University of Maryland, 1999.

[24] Soot - a Java Optimization Framework.
. http://www.sable.mcgill.ca/soot/.

[25] 4thpass SourceGuard.
. http://www.4thpass.com/sourceguard/.

[26] Vijay Sundaresan, Laurie Hendren, Chris-
lain Razafimahefa, Raja Vallée-Rai, Patrick
Lam, and Étienne Gagnon. Practical Virtual
Method Call Resolution for Java . Sable Tech-
nical Report 1999-2, Sable Research Group,
McGill University, April 1999.

[27] SuperCede, Inc. SuperCede for Java.
. http://www.supercede.com/.

[28] Frank Tip, Chris Laffra, Peter F. Sweeney,
and David Streeter. Practical Experience with
an Application Extractor for Java . IBM
Research Report RC 21451, IBM Research,
1999.

[29] Tower Technology. Tower J.
. http://www.twr.com/.

[30] Raja Vallée-Rai and Laurie J. Hendren. Jim-
ple: Simplifying Java Bytecode for Analyses
and Transformations. Sable Technical Report
1998-4, Sable Research Group, McGill Uni-
versity, July 1998.

